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The transient deformation of liquid capsules enclosed by elastic membranes subject to 
simple shear flow is studied numerically using a new implementation of the boundary 
element method. The numerical results for capsules with spherical unstressed shapes 
and varying degrees of surface elasticity are compared with the predictions of an 
asymptotic theory for small deformations due to Barthks-Biesel and coworkers, and 
the significance of nonlinear effects due to finite deformation is assessed. It is found 
that the capsules exhibit continuous elongation when the dimensionless shear rate 
becomes larger than a critical threshold, in agreement with recent experimental 
observations of capsules with polymerized interfaces. Membrane failure at large 
deformations is discussed with respect to membrane thinning and development of 
excessive elastic tensions, and it is argued that the location where the membrane is 
likely to rupture due to continued deformation is insensitive to the precise mechanism 
of rupture. The numerical results suggest that a dilute suspension of capsules behaves 
like shear-thinning medium with some elastic properties. Results of oblate spheroidal 
capsules suggest that the points of maximum membrane thinning and tension coincide 
but their location depends upon the unstressed capsule shape. 

1. Introduction 
There has been growing interest in recent years in studying the behaviour of fluid 

particles with generalized interfacial properties, the simplest one being a liquid droplet 
with constant surface tension, and a more complex one being a red blood cell enclosed 
by a biological membrane. Such studies are motivated by the practical need to analyse 
the behaviour of droplets with contaminated interfaces, cells enclosed by biological 
membranes, and various synthetic capsules encountered in the chemical, biochemical, 
and allied industries, with applications in chemical and biomedical engineering. 

The problem of flow past a liquid particle may be classified either as one of three- 
phase flow or as one of solid-fluid interaction. This is because the interface of the 
particle may be regarded either as a two dimensional Boussinesq medium whose 
rheological properties resemble those of a generalized two-dimensional fluid, or as a 
thin solid whose mechanical properties are analogous to those of a thin shell. In either 
case, the interfacial behaviour may be described under the auspices of continuum 
mechanics in terms of a set of physical constants including isotropic surface tension 
which is the analogue of the thermodynamic or hydrodynamic pressure, shear and 
dilatational viscosities, and modulii of elasticity. 

Regarding an interface as a continuum is a phenomenological approach that 
overlooks the precise nature of intermolecular forces at the level of the microstructure 
and simplifies the three-dimensional nature of the interfacial layer. The uncertainties 
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in specifying the precise nature of interfacial transport mechanisms or measuring the 
values of the pertinent physical constants, however, justify the use of macroscopic 
models. 

One example of a widely studied liquid capsule is the red blood cell. In this case the 
interface is a biologcal membrane that behaves like an incompressible viscoelastic 
solid at low shear rates, and like an incompressible two-dimensional fluid at high shear 
rates (Evans & Skalak 1980). In the second case, the isotropic component of the surface 
tension develops so that the surface area of the membrane remains locally and globally 
conserved, just as the pressure in an incompressible fluid develops so that the velocity 
field remains solenoidal at all times. Another common fluid capsule is a droplet of a 
monomeric solution with a polymerized interface whose mechanical behaviour has 
been described by a Kelvin-Voigt model (Chang & Olbright 1993). 

In the present work we consider the deformation of liquid capsules whose interfaces 
exhibit purely elastic behaviour. Such capsules are regarded as acceptable models of 
red blood cells under conditions of small deformation, droplets with polymerized 
interfaces at low shear rates, and droplets whose interfaces are contaminated by 
organic substances. Furthermore, liquid capsules with thin-wall rubber membranes 
that behave like elastic shells have been used in the past as prototypes of red blood cells 
in experimental studies in uitro (Lee & Fung 1969; Sutera et al. 1970). 

To place the present study into a more general framework of capsule dynamics, we 
briefly review previous work on capsule deformations in the presence of interfacial 
rheology. The starting point is Taylor’s analysis of the small deformation of liquid 
drops with constant surface tension as formalized, refined, and extended by several 
subsequent authors (Stone 1994). The deformation of capsules bounded by elastic 
shells of finite or infinitesimal thickness have been considered on several occasions. 
Richardson (1974) computed the transient deformation of an oblate ellipsoidal capsule 
bounded by a linearly elastic shell subject to a simple shear flow during the initial 
period of the motion. Brunn ( 1 9 8 0 ~ ~  b) computed the flow around a slightly non- 
spherical capsule enclosed by an elastic shell of finite thickness subject to a general 
incident flow. Barthbs-Biesel(l980) considered the steady shape of a nearly spherical 
capsule whose membrane tensions derive from the Mooney-Rivlin equation in simple 
shear flow, and Barthbs-Biesel & Chhim (1981) studied the associated rheology of 
dilute suspensions. Extending this work in a two-fold way, Barthbs-Biesel & Rallison 
(1981) considered the transient deformation subject to a general linear flow, and 
Barthks-Biesel & Sgaier (1 985) incorporated the effects of surface viscosity. More 
recently, Li, Barthbs-Biesel & Helmy (1 988) computed large axisymmetric deformations 
of capsules with elastic interfaces subject to an axisymmetric stagnation-point flow for 
a variety of unstressed shapes, and Barthbs-Biesel (1991) discussed the effect of 
interfacial properties on the behaviour of capsules in general linear shear flows. 

The distinguishing features of the present study are that the initial unstressed capsule 
shape is allowed to be arbitrary, the membrane tension tensor derives from a general 
strain-energy function, and the motion is computed for finite deformations. The 
formulation of the problem relies heavily on the theoretical developments of Barthks- 
Biesel and coworkers (1980, 1981, 1985). The numerical results extend the asymptotic 
analyses for small deformation into the regime of finite deformations, thereby 
illustrating their range of validity, and address the effect of the unstressed capsule 
shape. 

In the mathematical formulation we shall assume that the membrane is an 
infinitesimally thin elastic medium, and in the numerical computations we shall adopt 
a linearly elastic model for the interfacial behaviour pertinent to an incompressible 
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material. These are serious limitations that reduce the physical relevance of the model, 
especially with respect to membrane failure: a material with negative Poisson's ratio 
will thicken when it is stretched. It seems, however, that little can be done in the way 
of progress without such assumptions, at present, except for acknowledging these 
limitations. 

The present computations are based on a new implementation of the boundary 
element method which is capable of handling general interfacial properties including 
viscoelasticity and incompressibility. Despite significant advances in the implemen- 
tation of the method, high computational cost and the onset of numerical instabilities 
have forced us to restrict our attention to cases where the viscosity of the capsule is 
equal to that of the ambient liquid, the strain-energy function takes a simple form, the 
capsule deformation is finite but not excessively large, and the unstressed capsules are 
spherical or spheroidal with a moderate aspect ratio. 

Recently, Chang & Olbright (1993) presented an experimental investigation of the 
deformation and breakup of capsules in simple shear flow. The capsules were 
fabricated using a novel technique that renders the interfaces polymerized layers with 
nearly spherical unstressed shapes. Assuming that the interfaces behave like a 
viscoelastic medium with a single modulus of elasticity that derives from the theory of 
small deformations, and comparing the observations with the predictions of the 
aforementioned asymptotic theory of Barthes-Biesel and coworkers, Chang & Olbright 
computed values of the effective interfacial modulus of elasticity and surface viscosity. 
Examining the present numerical results in the light of the observations of Chang & 
Olbright will allow us to discuss the significance of continued capsule deformations on 
membrane rupture in simple shear flow. 

2. Mathematical formulation 
We consider the transient deformation of a neutrally buoyant liquid capsule 

suspended in an unbounded ambient fluid with viscosity p, subject to a simple shear 
flow along the x-axis with shear rate k, as shown in figure 1. The capsule contains a 
Newtonian fluid with viscosity hp and is bounded by a purely elastic interfacial layer 
of infinitesimal thickness and negligible mass. In the absence of the incident flow, the 
undeformed capsule may take an arbitrary unstressed shape in which the interfacial 
tensions vanish. The Reynolds number of the flow inside and around the capsule is 
assumed to be sufficiently small so that the motion of the fluid is governed by the 
equations of Stokes flow including the continuity equation and the Stokes equation. 

In the mathematical model we regard the interface as a two-dimensional elastic 
medium. We then require that the velocity is continuous across the interface, but allow 
the hydrodynamic surface force or traction to undergo a discontinuity Af = 
a(') n - d2) - n that is balanced by the interfacial or membrane tensions, where n is the 
unit normal vector pointing into the ambient fluid. The boundary integral formulation 
for Stokes flow provides us with an integral equation for the velocity at the interface 
in terms of AX 
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FIGURE 1. Schematic illustration of a capsule enclosed by an elastic membrane, deforming under the 
action of a simple shear flow along the x-axis. The shape of the membrane is described in terms of 
the curvilinear coordinates t; and 71. 

where urn = (ky,O,O) is the incident shear flow, the point x0 is located on the 
interface which is denoted by S,  /3 = ( A  - l ) / (A + l), and 

are respectively the free-space Green function for the velocity and stress (Pozrikidis 
1992, Chap. 5). The first and second integrals on the right-hand side of (2.1) are, 
respectively, the single-layer and double-layer hydrodynamic potentials for Stokes 
flow, and PV denotes the principal value of the improper double-layer integral. Given 
AJ we solve (2.1) for the interfacial velocity and advance the position of material point 
particles over the interface, thus describing the deformation of the capsule. 

The direction and magnitude of the traction discontinuity Af depends upon the 
developing elastic tensions. Neglecting interfacial bending moments allows us to 
assume that the tensions act in the plane of the interface and may thus be described by 
the two-dimensional elastic tension tensor T.  A force balance over a section of the 
membrane D that is enclosed by the contour C yields 

ID Af dS = - IC T - ( t  x n) dl, 

where t is the unit vector tangential to C directed in the counterclockwise sense with 
respect to n. The unit vector t x n is tangential to the interface and normal to the 
contour C. Taking the limit as D vanishes and using the divergence theorem we recast 
(2.3) to the differential form 

The right-hand side of (2.4) is the surface divergence of T. This completes the definition 
of the hydrodynamic problem. Our next task will be to relate T to the interfacial 
deformations. 

Af = ( / -nn) .V-  T. (2.4) 
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2.1. Elastic tensions 
To compute the instantaneous elastic tensions we relate them to the Green or material 
strain tensor using a constitutive equation that involves the surface strain-energy 
function (Novozhilov 1962). Skalak et al. (1973) developed the constitutive equation 
in global Cartesian co-ordinates in terms of the surface Piola-Kirchoff tensor, whereas 
Barthes-Biesel (1 980) developed an alternative formulation in surface curvilinear 
coordinates. Subsequently, Barthks-Biesel & Rallison (198 1) noted that the coupling of 
the fluid stresses on either side of the interface and the interfacial tensions is done most 
effectively in Cartesian coordinates, and rederived the constitutive equation in a form 
that is readily accessible to analytical and numerical computation. An analogous 
development for interfaces with viscous behaviour was presented almost simul- 
taneously by Secomb & Skalak (1982). The main steps in the formulation of Barthb- 
Biesel & Rallison (1981) will now be briefly outlined using the evolved notation of 
Barthes-Biesel & Sgaier (1985) and with reference to the original formalism of Skalak 
et al. (1973). 

Let us denote the Cartesian coordinates of a point particle on the interface at the 
initial instant when the interface is unstressed by X, and at some later time t by x. We 
extend the interface into the three-dimensional space, and assume that there are no 
deformations of the extended solid material in planes that are normal to the interface; 
effectively this implies that planes that are normal to the interface remain normal to the 
interface at all times. Assuming that a material vector that is initially normal to the 
interface remains normal to the interface at all times, we extend the domains of 
definition of X and x off the interface, and introduce the three-dimensional relative 
deformation gradient F defined over the interface by 

dx = F(X, t )  * dX. (2-5) 

Next, we introduce the interfacial relative deformation gradient A = F. ( / -  NN) 
where N is the unit vector normal to the interface at the initial instant corresponding 
to the unstressed shape. The distinguishing feature of A is that A.dX= F-dX when 
dX is in the plane of the interface, and A - dX = 0 when d X  is normal to the interface, 
which implies that A - N  = 0. The last equation reveals that N is an eigenvector of A 
with corresponding eigenvalue equal to zero, which means that A is singular. After the 
interface has been deformed, two orthonormal material vectors T, and T, that are 
tangential to the undeformed interface at a point will become t ,  and t,, where the last 
two vectors are not necessarily unit vectors. Writing /-NN = T, T, + T, T, we 
compute n.A = n . F . ( T ,  TI+ T, T,) = n - ( t l  T ,+ t ,  T,) = 0 which implies that A = 
(/-nn).A or 

A = ( / -nn> .F . ( / -NN) .  (2.6) 
Following standard procedure, we introduce the symmetric surface Cauchy-Green 

strain tensor 

where the superscript Tdesignates the transpose. The eigenvalues of A' are equal to A;, 
A: and 0, where A, and A, are the principal extension ratios in the plane of the interface. 
The corresponding eigenvectors are composed of two mutually orthogonal tangential 
vectors and the normal vector n. The local area stretch of the interface is equal to 
A, A,. Skalak et al. (1973) introduced the strain invariants 

A' = A-AT, (2.7) 

Z, = A;+Ai-2 = trace(Aa)-2, Z, = @,A,)'- 1. (2.8) 
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The purpose of introducing I ,  in this particular form is to have an invariant that 
vanishes when the area of the interface is locally conserved, which is useful in modelling 
the membrane of a red blood cell. Barthts-Biesel & Rallison (1981) introduced the 
alternative invariants 

A ,  = In (A,  A,) = i ln  {i[trace2(A2) - trace (A‘)]} = :ln ( I ,  + l),\ 

which are appropriate for more general elastic behaviours. Both I ,  and A ,  vanish when 
the local areal stretch is equal to one, in which case all interfacial patches maintain their 
original surface area. 

Barthts-Biesel & Rallison (1981) showed that the interfacial stress tensor derives 
from a surface strain energy function W(A,, A 2 )  by means of the equation 

(2.9) I A 
2 2 1  

(2.10) 

In the unstressed state A2 = /-nn and we must have aW/aA, +aW/aA, = 0 in order 
for 7 = 0. When the deformations are small, the strain-energy function may be 
expanded in a Taylor series with respect to A ,  and A ,  which may be placed in the 
standard form 

where at are material constants, and a. may be assigned an arbitrary value with no 
consequences on the magnitude of the interfacial tensions. 

Considering the asymptotic behaviour of a three-dimensional elastic shell which in 
the unstressed state has a small uniform thickness h, we find that, in the limit as h 
vanishes, 

where E is the bulk Young modulus of elasticity of the three-dimensional material 
(Barthts-Biesel & Rallison 1981). In this case (2.10) takes the simplified form 

W = a,+(a,-a3)Al +a3 A2+i(al  +a2) A : + .  . . , (2.1 1) 

a1 = 0, a2 = $Eh, a3 = iEh, (2.12) 

(2.13) 

In the unstressed state A ,  = 0 and A2 = /-nn which implies that T = 0. 

of the strain-energy function 
Skalak et al. (1973) proposed modelling the membrane of a red blood cell in terms 

w = p ( ; I ;  + Il - I,)  + ICP , - - I ,B[2A,(A2+ 1)+ 1 -e2”1]+iC(e2”1- l)’, (2.14) 
where B and C are material property constants whose values are deduced from 
experimental observations. 

2.2. Particle stress tensor 
The shape of the capsule and the instantaneous interfacial velocity field may be used 
to compute the effective stress tensor (u) of a dilute emulsion of drops in simple shear 
flow. Following Batchelor (1970) and Pozrikidis (1993) we find 

J [ A ?  xj -PO - A )  (ui nj + uj nt)l d ~ ,  (2.15) 
Capsule 

+iJ = - 4j(P) + 2Pl(ei*) + @ 

where ( ) signifies volume average values and @ is the number of drops per unit 
volume of the suspension. The integral on the right-hand side of (2.1 5 )  is known as the 
stresslet or particle stress tensor, and will be denoted by Z. 
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3. Numerical method 
To describe the motion of the interface we introduce two surface coordinates 6 and 

7, construct a curvilinear surface grid of size N by M as shown in figure 1, and then 
compute the motion of marker points that lie at the intersections of grid lines. At the 
initial instant, the (-lines are lines of constant z, evenly distributed with respect to the 
azimuthal angle, and the 7-lines are lines of constant meridional angle 8. The marker 
points are Lagrangian point particles, and as such they move with the velocity of the 
fluid. The intersections between two successive surface coordinate lines defines a set 
quadrilateral boundary elements over the main body of the cell and a set of triangular 
elements with a node on the z-axis. 

To compute the traction discontinuity Affrom equation (2.4) we require the surface 
divergence of the interfacial tension, but the computation of the latter involves high- 
order differentiations that worsen the accuracy of the numerical method. To circumvent 
this difficulty, we replace the single-layer integral on the right-hand side of (2.1) with 
a sum of integrals over all boundary elements E,, and implement a special version of 
the trapezoidal rule, writing 

are the mean values of the discontinuity in the interfacial surface force and Green's 
function over the nth element, and S ,  is the surface area of the nth element. 
Approximations similar to the one shown in (3.1) were used previously by the present 
author to compute the deformation of drops with constant surface tension and viscous 
interfacial behaviour, as well as the deformation of capsules with the incompressible 
interfaces characterized by isotropic tension (Pozrikidis 1993, 1994; Zhou & Pozrikidis 
1995). Using the force balance in equation (2.3) we obtain 

where C, is the contour of the element En., b = t x n, and t is the unit vector tangential 
to C ,  pointing in the counterclockwise with respect to the normal vector as shown in 
figure 1. The contour integral in (3.3) is computed using the one-step trapezoidal rule, 
which requires knowledge of the value of the elastic tensions at the surface grid points. 
The latter are computed in a straightforward manner using (2.10) where all necessary 
differentiations are carried out using central differences with respect to the curvilinear 
surface cordinates. 

The three-dimensional relative deformation gradient F is computed by solving three 
systems of linear equations for the three rows of F that derive by applying (2.5) for the 
two material tangential vectors aX/a[ and a X / a ~  and the normal vector N at the grid 
points, yielding axla6 = F.  aX/at;, ax/aq = F.  aX/aq, and fln = F.  N, where f l  is an 
arbitrary scalar coefficient. Having obtained F, we compute A using equation (2.6). 
Equivalently, we may obtain the three rows of A directly by solving three systems of 
linear equations that derive from axlag = A .  aX/a[, ax/a7= A - aX/aq, and 0 = F.  N. 
Having obtained A, we compute A' using equation (2.7), and then recover the tensions 
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t y' 

FIGURE 2. (a) To compute the single-layer integral, each quadrilateral boundary element is subdivided 
into four flat triangles, and the non-singular integrals over the triangles are computed using a 
quadrature. (b) When the point xo is located at a vertex of an element, the single-layer integral 
becomes singular. In this case the element is divided into a non-singular and a singular triangle, and 
the singular integral is computed by mapping the singular triangle into the (x',y')-plane and 
performing the integration in plane polar coordinates. 

from (2.10). The tension tensor at the singular grid point that lies on the z-axis is 
computed by quadratic extrapolation using the mean values of the tension at the two 
previous 7 grid lines. 

The single-layer integral on the right-hand side of (3.1) over the nth quadrilateral 
element evaluated at a point xo that is located off the element, is computed according 
to the formula 

4 1 + 
s n ,  3 + s n ,  4 i~ JT, ,k  

where T,, k ,  k = 1,2,3,4, designates the four planar triangles that may be formed by 
connecting the vertices of the nth element as shown in figure 2(u), and S, ,k  are the 
corresponding surface areas. This particular formulation prevents the geometrical bias 
due to the preferential element triangulation into one of the two pairs (q,  T,) or 
(q, T,). The integrals over the triangles are computed using the three-point Gaussian 
quadrature for a triangular domain, which approximates the integral by the product 
of the area of the triangle and the mean value of the Green function evaluated at the 
mid-points of each one of the three sides. 

The single-layer integral is singular when the point xo is located at one of the vertices 
of a quadrilateral element as shown in figure 2(b). In this case we discretize the element 
into two triangles, only one of which contains the singular point as shown in figure 
2(b), and write 

2 

(3 * 5)  
1 

( G i j ) n  ( ~ 0 )  = G& XO) dS(x). 
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The integral over the non-singular triangle q,, is computed using the three- or four- 
point Gaussian quadrature as mentioned above. To compute the singular integral over 
the triangle K , l  we map it onto a right-angled triangle in the (x’,y’)-plane shown in 
figure 2(b), using the linear mapping function 

X’ Y‘ x = XI +- (x, -xl) + -(x3 -XJ, a b 

where a = Ix, - xll and b = Ix, - xlI, and remove the singularity by working in local 
polar coordinates according to the formula 

f” I”’G,,(x,x,)pdpd8 

7’ (3 7) 
1 

J T f l . ,  Gij(x, xu> d ~ ( x )  = 

where R(8) = ab/(asin8+ bcos8). The two integrals on the right-hand side of (3.7) 
over p and 8 are computed using the four- or six-point Gauss-Legendre quadrature for 
integration in each direction. 

Large computational cost made it necessary to restrict our attention to the case A = 1 
for which the coefficient of the double-layer integral on the right-hand side of (2.1) 
vanishes. Preliminary computations using a crude method for evaluating the double- 
layer integral showed that the iterative solution of the integral equation for other 
values of A requires a prohibitive computational cost. For instance, for A = 5 and with 
a N = 16 by M = 8 grid, the solution of the integral equation requires about 15 mins 
of CPU time on the workstation described below. 

After the velocity at the grid points has been computed, the position of the marker 
points is advanced with the velocity of the fluid using Euler’s method. The performance 
of the numerical method depends upon the magnitude of the elastic tensions and the 
degree of capsule deformation. Sawtooth instabilities arise, but may be effectively 
controlled by reducing the size of the time step At to a sufficiently small level. The 
origin of these instabilities is probably similar to that for liquid drops with isotropic 
surface tension (Kennedy, Pozrikidis & Skalak 1994). Note that similar difficulties have 
been reported for the analogous problem of flow in the heart where the action of the 
muscle is modelled in terms of elastic link structures (Peskin & McQueen 1980). 
Furthermore, an increasingly small time step is required at the late stages of the motion 
when the capsules deforms and reaches a nearly stationary shape, and when a capsule 
deforms and is then allowed to relax back to the initial unstressed shape. 

One effective way of filtering out the instabilities is to apply numerical smoothing 
according to which the marker points along the &lines are repositioned using the five- 
point smoothing formula of Longuet-Higgins & Cokelet (1976) after the completion of 
each time step. The effect of smoothing on the accuracy of the results will be discussed 
in the next section. The maximum value of At for a stable computation depends upon 
the size of the interfacial grid and the values of the surface elasticity: as the grid 
becomes finer and the surface elasticity is increased, a smaller At is required. For the 
N = 16, M = 8 grid used in the majority of the computations, kAt ranged between 0.01 
and 0.001 across the parametric studies, with an average of 200 time steps for a 
complete computation. 

The majority of the computations were performed with a standard N = 16 and M = 8 
grid, but some experimentation was done with a finer grid as will be discussed in 
$4. The volume of a capsule changed by less than 1 % of the initial value from the 
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beginning to the end of a computation. All computations were performed on a SUN 
SPACstation IPC with 24 Mb of RAM. For the simple case A = 1, one velocity 
evaluation requires approximately 2 min of CPU time. 

4. Spherical capsules 
In the present section we consider the deformation of capsules with spherical 

unstressed shapes bounded by elastic membranes whose strain-energy function is 
described by (2.11) and (2.12) with the membrane tension given by (2.13). Strictly 
speaking, these equations apply only in the limit of small deformations, but in order 
to reduce the parametric space of our investigation and establish a point of reference, 
we shall assume that they remain valid even when the deformations are not small. 

Non-dimensionalizing all lengths by the undeformed capsule radius a, time by the 
inverse shear rate l /k,  velocity by ak, stresses by pk,  and tensions by pka, we find that 
the behaviour of the capsule depends upon the viscosity ratio A and the dimensionless 
shear rate G = pka/Eh where E is the Young modulus of elasticity and h is the 
membrane thickness in the unstressed state. It is worth noting that G is analogous to 
the capillary number Ca = p k a / y  applicable for drops with constant interfacial tension 
y.  For the reasons stated in the preceding section, we shall confine our attention to the 
case h = 1 and examine the motion as a function of the dimensionless shear rate G 
alone. 

4.1. Small-deformation theory 
Barthks-Biesel & Rallison (198 1) studied the transient deformation of spherical 
capsules in a general linear flow, under the assumption that the deformation is 
sufficiently small so that all variables may be expanded in an asymptotic series with 
respect to a properly defined small-deformation parameter. Maintaining first-order 
terms in the expansions, they found that when the capsule is immersed in a simple shear 
flow, the position of material points over the interface is given by 

where 

x‘y’ 
alx I 

x(r) = x’(t)+K(t)[y’,x’,O]+21(t),[x’, y’,O], 

- = k l  dx’( t) [-: k :].x’(t). 
0 0 0  

dt 

Physically, x’ would be the location of point particles if 

(4.2) 

the undeformed spherical 
capsule rotated like a rigid body with angular velocity equal to half the vorticiiy of the 
incident shear flow; x’(0) = Xis the position of the point particles at the initial instant. 
The dimensionless functions K and Z evolve according to the linear equations 

2 - dK 5 1 1 2 3h+2 dZ _-  dt  -=(2 - + - L + -  5 5 19A+16M)7 dt- 19h+16M’ 

where the auxiliary dimensionless functions L and it4 are defined as 

1 
L = -[4( a2 +a,) J -  (6a2 + loor,) K ] ,  

Pka 

(4.3) 

(4.4) 
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FIGURE 3.  Convergence of the numerical results with respect to the grid size for the evolution of the 
deformation parameter D,, for an initially spherical capsule at dimensionless shear rate G = 0.10. 
The short-dashed, solid, and long-dashed lines represent, respectively, results with grids of size 
( N ,  M )  equal to (8,4), (16,8), and (24,12). The inset shows the location of the marker points in the 
(x,y)-plane at time kt = 1.03 with triangles, circles, and squares for the coarse, intermediate, and fine 
grid. 

with J = Z+K. The coefficients cr, are identical to the material constants that appear 
in the expansion (2.1 1). 

4.2. Numerical accuracy 
Before discussing the numerical results we address the accuracy of the computations by 
plotting the evolution of the deformation parameter D,, = (L-B)/(L+B),  where L 
and B are the maximum and minimum radial distances of the contour of the capsule 
in the (x,y)-plane from the origin, for G = 0.10, computed using a progressively finer 
grid with (N,  M) equal to (8,4), (16,8), and (24,12) (figure 3). The long-dashed line, 
corresponding to the finest grid, lies close the solid line, corresponding to the 
intermediate grid, and this suggests that the intermediate grid yields satisfactory 
accuracy for moderate and large deformations. Consequently, the (16,8) grid was 
adopted as the standard grid in the main body of the parametric investigation. 

To further demonstrate the effect of the grid size, in the inset of figure 3 we plot the 
instantaneous position of the marker points in the (x, y)-plane at kt = 1.03 for the three 
grids mentioned above, and connect the marker points to obtain visually in- 
distinguishable contours. It is surprising that even the crude (8,4) grid is able to 
describe the shape of the capsule with sufficient accuracy. The accuracy of the 
numerical results will be further confirmed by comparing the numerical results with the 
predictions of the small-deformation theory. 
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FIGURE 4. The evolution of the deformation parameter D,, at a sequence of dimensionless shear rates 
G. The dashed lines represent the predictions of the first-order linear theory for small deformations. 
The line branching off the tail-end of the curve for G = 0.05 corresponds to a computation with 
numerical smoothing. 

4.3. Transient and asymptotic deformations 
In figure 4 we plot the evolution of the Taylor deformation parameter D,, defined 
previously for a sequence of dimensionless shear rates. The numerical results are 
represented by the solid lines, and the predictions of the linearized system (4.1) are 
represented by the dashed lines. The latter predicts that, at long times, D,, tends to a 
steady value that is equal to D;, = (25/4) G. When G = 0.0125 and 0.025, in which 
cases the deformations are small and moderate throughout the evolution, the 
numerical results are in excellent agreement with the predictions of the small- 
deformation theory. At long times, the capsule assumes a stationary shape whose 
estimated asymptotic deformation, Dz", = 0.078 and 0.156, is predicted with high 
accuracy by the linear model. When G = 0.05 the agreement between the numerical 
results and the asymptotic predictions is good during the initial period of deformation, 
but deteriorates at later times. The asymptotic deformation D;, = 0.27 emerging from 
the numerical computations is substantially lower than that predicted by the small- 
deformation theory which is equal to 0.313. Similar discrepancies between the 
numerical results and the predictions of the linear theory at finite deformations are 
observed for G = 0.10,0.20. The extrapolated asymptotic deformations at long times, 
D:' = 0.40 and 0.53, are significantly lower than those predicted by the linear model. 

As mentioned in #3,  as the capsules approach a steady state, a progressively smaller 
time step must be used in order to suppress the sawtooth-type numerical instabilities, 
but this occurrence leads to prohibitively long computational times. A compromise 
would be to apply numerical smoothing as discussed in $3. The small curve branching 
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FIGURE 5. The location of marker points in the (x,y)-plane as computed by the present numerical 
method (circles) and predicted by the first-order small-deformation theory (triangles) for G = 0.10, 
at times (a) kt = 0.60, (b) kt = 1.23, (c) kt = 1.80. 

off the tail end of the deformation curve for G = 0.05 in figure 4 corresponds to a 
computation with smoothing, but the asymptotic deformation predicted using this 
modification is substantially lower than that corresponding to the computation 
without smoothing. The effect of smoothing on the shape of the capsule becomes 
milder as the grid size becomes h e r .  

To examine the physical origin of the differences between the predictions of the 
linear theory and the results of the numerical computations at finite deformations, we 
compare the predicted and computed capsule shapes at different stages of the motion. 
In figure 5(a-c) we plot with circles the computed location of the grid points in the 
(x,y)-plane for G = 0.10, and with triangles the corresponding predictions of the linear 
model, at three time instants. At small deformations the agreement is acceptable, but 
at moderate and large deformations we observe significant deviations. The linear 
theory, in particular, predicts that the capsule deforms along the principal direction of 
the rate of strain of the shear flow, which forms a 45" angle with respect to the x-axis, 
whereas the numerical results show that the inclination is reduced during the 
deformation. 

Returning to figure 4 we note that when the dimensionless shear rate G is set to unity, 
the capsule continues to deform without showing evidence that it reaches a steady 
shape, and the computations are interrupted when the grid fails to resolve the fine 
structure of the interface with adequate resolution. Whether continued deformation 
will lead to breakup or the capsule will assume a highly distorted steady shape cannot 
be stated with confidence. Continued deformation occurs when D,, exceeds roughly 
the value of 0.55, and the critical value of G above which the capsule fails to reach a 
stationary shape is estimated to be close to but above the value of 0.20. For 
comparison, we note that the critical value of the capillary number above which drops 
with h = 1 and constant surface tension y exhibit continued elongation is Ca = 0.37 
(Kennedy et al. 1994). 

In figure 6 we plot the computed asymptotic capsule deformation OF, as a function 
of G and obtain a concave curve that terminates at about G = 0.20. The shape of this 
curve is similar to that for viscous drops with constant surface tension at values of the 
viscosity ratio h larger than 4 (Kennedy et al. 1994). At small deformations the 
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FIGURE 6 .  The extrapolated asymptotic deformation at long times D+"Y as a function of the 
dimensionless shear rate G. The curve terminates at a critical shear rate that is close to 0.20. The solid 
and dashed lines show, respectively, the predictions of the first- and second-order theory of Barthbs- 
Biesel (1980). 

FIGURE 7. Trajectories of marker points in the (x,y)-plane for (a) G = 1.0, at kt = 0,0.735,1.35, 
1.95; (b)G=0.l,atkf=0,0.60,1.23,1.80;(c)G=0.02,atkt=0,0.50,1.00,1.50. 

numerical results are in good agreement with the predictions of the first-order theory 
represented by the straight line. The second-order theory of Barthes-Biesel (1980) for 
membranes that obey the Mooney-Rivlin constitutive equation predicts that the 
asymptotic deformation curve is convex, that is the slope dD,",/dG increases as G is 
raised to higher values, which contrasts with the behaviour shown in figure 6. This 
discrepancy might be attributed to the fact that the range of deformation in which the 
second-order correction makes a dominant contribution over higher-order corrections 
is limited. 

The nature of the interfacial deformation and asymptotic motion at long times may 
be illustrated by studying the trajectories of the grid points in the (x, y)-plane. In figure 
7 (a-c) we have superposed evolving capsule profiles in the (x, y)-plane for G = 1 , 0.10, 
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FIGURE 8. The evolution of the inclination angle 8 of the major axis of the capsule for a sequence of 
dimensionless shear rates G. The straight horizontal lines represent the predictions of the second- 
order theory of Barthks-Biesel (1980) for G = 0.05,0.025,0.0125. 

0.05 at a sequence of characteristic times, marking the trajectories of selected marker 
points. Figure 7(a) shows that the marker points move predominantly under the 
influence of the shear flow with the elastic tensions offering only weak resistance, with 
no evidence that the capsule approaches a steady state. In contrast, the motion of the 
marker points indicated in figure 7(b, c) is consistent with the approach towards a 
steady shape. The contours corresponding to last two time instants in each frame, in 
particular, suggest that the interface executes a tank-treading motion with the marker 
point rotating around the interface. The character of the tank-treading motion will be 
discussed later in this section. 

Chang & Olbright (1 993) reported experimental observations and measurements of 
the deformation of capsules with polymerized interfaces in simple shear flow. 
Assuming that the interfaces exhibit linear viscoelastic behaviour and comparing their 
measurements with the predictions of the linear analysis of Barthb-Biesel & Sgaier 
(1989, they obtained values for the effective membrane viscosity and elasticity. 
Furthermore, by plotting the asymptotic deformation D;v as a function of the 
dimensional shear rate G they obtained a curve with a concave shape which is 
qualitatively similar to the one shown in figure 6 of the present paper. The linear regime 
of their deformation curve ends at G = 0.04 which is in agreement with the results of 
the present computations. 

Chang & Olbright (1993) observed that when the dimensionless shear rate G exceeds 
a certain value, the capsules deform to a quasi-steady elongated shape, oscillate, and 
then stretch until the membrane bursts and the contents of the capsule spill into the 
suspended fluid. Experimental difficulties did not permit the precise evaluation of 
critical value of G, but in one reported experiment, continued elongation occurred 
when the deformation parameter D exceeded the value of 0.50 with corresponding 
dimensionless shear rate as high as G = 0.066. Our computations suggest that the 
critical value of G is close to and somewhat above the value of 0.2. The disagreement 



C. Pozrikidis 138 

0.55 

0.50 

4 0.45 

0.40 

0.35 , 0.2 0.4 0.6 0.8 1 .o 

ein 

FIGURE 9(a,b). For caption see facing page. 

between computations and observation may be attributed to the facts that (a) the 
unstressed state of the capsules studied by Chang & Olbright was not precisely 
spherical, (b) the viscosity ratio was not exactly equal to one but had a lower value, (c) 
the membrane appeared to have an appreciable surface viscosity and to exhibit plastic 
deformations. 

4.4. Transient and asymptotic inclinations 
To further describe the nature of the evolving and asymptotic capsule shapes, in figure 
8 we plot the inclination angle 0 of the major axis of the drop for the cases shown in 
figure 4. For all values of G with the exception G = 1, the results indicate that 8 tends 
to an asymptotic value, with higher deformations corresponding to lower inclinations. 
Equation (4.1) predicts that the capsule deforms along the principal direction of the 
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FIGURE 9. Distributions of (a) the tangential component of the velocity, (b) relative thickness of the 
membrane h'/h = l/h,h, (the dashed lines show the predictions of the linear model), (c) first 
principal tension & in the (x,y)-plane, (d)  second principal tension along the z-axis, around the 
contour of the capsule in the (x,y)-plane (the dashed line shows the limit for an undeformed spherical 
capsule); 0, G = 0.0125, kr = 0.308; 0, G = 0.025, kr = 0.593; x , G = 0.05, kt = 1.0; +, G = 0.10, 
kt = 1.5. 

rate of strain of the shear flow at a 45" angle with respect to the x-axis, but the second- 
order analysis of Barthks-Biesel (1980) shows that nonlinear effects cause the capsule 
to incline towards the x-axis. The three horizontal lines in figure 8 represent the 
predictions of the second-order theory for G = 0.05,0.025,0.0125 read off figure 7 of 
Barthks-Biesel (1 980). Although computations at long times were prohibited by 
numerical instabilities, the asymptotic inclinations deduced by extrapolating the 
numerical results are in qualitative agreement with those predicted by the second-order 
expansion. The difference between the numerical and asymptotic results is substantial 
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FIGURE 10. The shape of the interfacial N = 16,M = 8 grid for G = 0.10 at (a) kt = 0, (b) kt = 1.51. 
The interfacial elements remain untwisted at all times, but sawtooth-type oscillations develop at later 
times. 

when the deformations are large, but similar discrepancies exist in the analogous case 
of liquid drops with constant surface tension (Kennedy et al. 1994). 

4.5. Kinematics of interfacial motion 
To further examine the nature of the asymptotic motion at steady state, in figure 9(a) 
we plot the distribution of the tangential component of the velocity around the contour 
of the capsule at the (x,y)-plane, ut, as a function of the meridional angle 0 for G = 
0.10,0.05,0.025,0.0125. The associated times fall into the advanced stages of the 
motion before numerical instabilities have started to become noticeable. The results 
show that the distribution of the reduced tangential velocity fluctuates around a mean 
value which increases from about 0.4ka when G = 0.10, in which case the capsule is 
substantially deformed, to about 0.5ka when G = 0.0125, in which case the capsule is 
only mildly deformed. The value of 0.5ka corresponds to the tank-treading velocity of 
a rigid spherical particle freely rotating in a simple shear flow. The maximum deviation 
of the tangential velocity from its mean value is about 20 YO, which indicates that the 
interface is subjected to a substantial degree of stretching. 

The reduced period of rotation of a material point on the membrane in the (x,y)- 
plane as computed from the distribution of the tangential velocity at long times is 
T' = kT/(4n) = 1.0, 1.0, 1.1,1.3 for G = 0.10,0.05,0.025,0.0125. The reference value 
T' = 1 corresponds to a rigid spherical particle rotating freely in a simple shear flow. 
The fact that T' is larger than 1 is attributed to the increased perimeter of the capsule in 
the (x, y)-plane due to the capsule's deformation, as well as to the fact that the internal 
flow deviates from rigid-body rotation. To further illustrate the behaviour of interfacial 
elements during the deformation, in figure 10(a, b) we present three-dimensional plots 
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of the surface co-ordinate over half of the capsule for G = 0.1, at the initial instant and 
at an advanced stage of the evolution at time kt = 1.51. The fact that the surface 
coordinate lines remain smooth and untwisted indicates that point particles on the 
membrane rotate around the centre of the capsule with comparable tank-treading 
frequencies. 

4.6. Interfacial stretching, tensions, and rupture 
Rupture of the membrane may be caused by two distinct but somewhat related 
mechanisms including excessive thinning and excessive tension. Thinning is relevant 
when the interface is a thin sheet of a three-dimensional elastic material such as rubber 
or an elastomer. Excessive tension is relevant when the interface consists of a biological 
membrane with a lipid bi-layer structure such as the membrane of a red blood cell. For 
instance, measurements have shown that the membrane of the red blood cells fails and 
the cell hemolyzes when the tension exceeds a threshold that is estimated to be between 
5 and 10 dyn cm-l (see, for instance, Lacelle, Evans & Hochmuth 1977). 

Rupture due to thinning is discussed by Li et al. (1988) and Chang & Olbricht (1993) 
on the basis of the linear model of Barthes-Biesel & Rallison (1981). Although in the 
mathematical formulation the membrane thickness h is assumed to remain constant so 
that the dimensionless shear rate G is independent of time, one requires that the mass 
of the three-dimensional membrane is conserved and finds that the instantaneous 
membrane thickness is given by h’/h = l /A ,  A, where A, A, is the interfacial areal 
stretch. The fact that G is assumed to be uniform and constant in the computations 
implies that the computed final thickness h’ is a mere estimate and probably an upper 
bound of the actual value. If the area of the interface were locally and thus globally 
conserved, A, A, = 1 at all times, in which case deformation from the spherical shape 
is not possible. 

Examining the distribution of h’/h = l / A ,  A, over the interface we find that it reaches 
a minimum in the (x ,  y)-plane. In figure 9(b) we plot l/h, A, around half the capsule 
contour in the (x,y)-plane as a function of the meridional angle 8. The dashed lines 
show the predictions of the linear model represented by In (A ,  A,) = 2x’y’(2J- 3K) /a2  
where the position vector x’ and dimensionless functions J and K are defined in (4.2) 
and (4.3) (Barthks-Biesel & Rallison 1981, p. 263). The numerical results for G = 
0.0125 and 0.0250 yield nearly sinusoidal distributions that are in good agreement with 
the predictions of the linear model. At these low deformations, the ratio h’/h is close 
to 1, with values lower than 1 in the first quadrant indicating that the membrane has 
been stretched, and higher than 1 in the second quadrant indicating that the membrane 
has been compressed. At higher values of G the ratio h’/h is less than 1 over the entire 
contour of the capsule with a minimum near the major axis of the capsule. This 
behaviour suggests that when thinning is responsible for rupture, the membrane will 
fail at a point that is close to the axis of maximum deformation, which is in qualitative 
agreement with the observations of Chang & Olbright (1993). 

To investigate the alternative mechanism of membrane failure due to excessive 
tension, we consider the distribution of the two principal tensions over the trace of the 
membrane in the (x,y)-plane. The first principal tension q acts tangentially to the 
contour of the membrane in the (x,y)-plane, and the second principal tension acts 
in a direction that is perpendicular to the (x,y)-plane, that is, it points in the 
azimuthal direction along the z-axis. In figure 9(c, d )  we plot the distributions of q and 
T, around half the capsule contour as a function of the meridional angle 0 for several 
values of G. The oscillations observed in figure 9 (c) at low values of G are probably due 
to the fact that the numerical error becomes comparable to the actual magnitude of 
the computed physical variable. The dashed line in figure 9(d) represents the limit 
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for an undeformed spherical capsule, corresponding to G = 0, described by T,/,uka = 
2.5 sin26; since the trace of the capsule in the (x,y)-plane does not deform, 
the corresponding first principal tension is equal to zero (Barthts-Biesel 1980). 
The numerical results are in agreement with the analytical predictions at small 
deformations. 

Two important features emerging from figure 9(c, d )  are that, as the dimensional 
shear rate G is raised, the magnitude of q increases whereas the magnitude of T,  
decreases, and the distributions of and T,  are out of phase with each other. At small 
deformations the distributions are smooth, but at larger deformations they exhibit 
sharp variations around the points of extrema. Furthermore, at small deformations the 
tensions can be either tensile or compressive, whereas at large deformation they are 
tensile over the entire contour of the capsule. The magnitude of T,  is significantly 
higher than that of at small and moderate deformations, but at larger deformations 
the two tensions assume comparable values with T, prevailing over q. In all cases T,  
obtains a maximum value close to the axis of maximum deformation, which will be 
the point of rupture when the elastic tensions may no longer be supported by the 
membrane. Since maximum thinning also occurs at that point, the point where the 
membrane is expected to fail will be insensitive to the precise mechanism of rupture. 

To this end, we must emphasize that the physical relevance of the above conclusions 
is undermined by the use of a simplified interfacial constitutive equation which is 
certain to fail at the critical conditions for rupture. Furthermore, the presence of tank- 
treading motion implies that a certain piece of membrane material is subjected to high 
tensions only for a limited amount of time, and the frequency of cyclic loading may be 
a relevant parameter as far as determining membrane failure. 

4.7. Rheology of dilute suspensions 
We turn next to consider the rheological properties of a dilute suspension of capsules 
in simple shear flow. In figure 11 (a-c) we plot the evolution of the shearing component 
of the particle stress tensor 2,. and first and second normal stress differences ZVl = 
C,, -Cup, N ,  = Zu, - C,,, all reduced with respect to the corresponding shearing 
component for a suspension of rigid spherical particles which is denoted by Z&. The 
dashed lines in figure 11 (a) represent the results of the linear theory of Barthis-Biesel 
& Rallison (1  98 1) which shows that 

(4.5) 

where the dimensionless functions L and M are given in (4.4). The agreement between 
the asymptotic predictions and the numerical computations is excellent at small 
deformations but becomes worse at moderate and large deformations. The asymptotic 
theory predicts that the ratio ZTJZ& tends to 1 at large times irrespective of the value 
of G, whereas the numerical results show that Z,JZ&, tends to asymptotic values that 
become smaller as G is raised. This suggests that a dilute suspension of capsules in 
simple shear flow behaves like a shear-thinning medium, in agreement with the results 
of the second-order theory of Barthes-Biesel & Chhim (1981). When the surface 
elasticity is large or G is small, the membrane rotates like a rigid shell, the flow within 
the capsule represents rigid body rotation, and the ratio Z:./Z& becomes equal to 1. 

Figure 11 (6) shows that, as G is increased, the asymptotic value of the first normal 
stress difference N ,  increases because the capsule attains an increasingly non-spherical 
shape and therefore promotes the spatial anisotropy in the suspension. The estimated 
asymptotic values of N ,  for G = 0.05,0.025,0.0125 are in fair agreement with those 
predicted by the second-order theory of Barthes-Biesel & Chhim (198 l), which yields 

ZZY/Z& = - &(;L + ;M) ,  
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FIGURE 1 1 .  The evolution of (a) the shear component of the particle stress tensor and (b, c) first and 
second normal stresses for a dilute suspension of capsules, at a sequence of dimensionless shear rates 
G, reduced with respect to the shear component Z& for a dilute suspension of rigid spheres. Dashed 
lines in (a) show the linear theory of Barthks-Biesel & Rallison (1981). 
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FIGURE 12. Evolution of the deformation parameter D,, during relaxation where the shear flow is 
stopped and the capsule is allowed to relax back to the spherical shape, for three different initially 
deformed capsule shapes. The short dashed line shows the predictions of the first-order linear theory. 

N J Z &  = 14.866. Figure 11 (c) shows that N ,  tends to attain negative values at long 
times, which suggests that a dilute suspension behaves like a non-Newtonian fluid with 
some elastic properties similar to those exhibited by polymeric solutions. 

4.8. Relaxation to the spherical shape 
We performed a series of computations in which the incident shear flow was stopped 
at a certain time during the evolution, and the capsule was allowed to relax back to the 
spherical shape. The numerical method worked well for an extended period of time 
during the initial relaxation period, but numerical instabilities eventually set in 
bringing the computations to an end. In figure 12 we plot the deformation D,, as a 
function of the dimensionless time tEh/,ua during relaxation. The three curves shown 
with the solid, dashed, and dot-dashed lines correspond to three different initial capsule 
shapes taken from the evolution of spherical capsules with G = 0.05,0.025, and 0.0125. 
The origin of time in the three computations has been shifted to match corresponding 
values of Dz.. The orientation of the capsules remained virtually constant during the 
relaxation. 

The three curves in figure 12 form a natural continuation of each other, and this 
indicates that, for a given value of Dzy, the relaxation of the capsule depends weakly 
on the initial shape. The short-dashed line in figure 12 represents the predictions of the 
first-order model of Barthks-Biesel. The analytical predictions are in good agreement 
with the numerical results at small deformations. Replotting the data on a linear-log 
scale we obtain a straight line with a well-defined slope. The negative of the inverse of 
the slope defines the relaxation time 7 = 12.7pa/Eh which may be used to assess the 
value of Eh from measurements of the capsule deformation during relaxation. The 
small-deformation theories of Brunn (1980a, b) and Barthes-Biesel & Rallison (198 1, 
p. 263) reveal the presence of two relaxation times, 7 = 12.l,ua/Eh and 1.36pa/Eh, the 
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first of which is relevant in the late stages of the motion. The small difference between 
the computed and the theoretical relaxation time may be attributed to numerical error 
or to the effect of the shorter scale. 

5. Ellipsoidal capsules 
In the second part of the numerical investigation we consider capsules with oblate 

ellipsoidal unstressed shapes resembling resting normal red blood cells. The motion of 
the capsules is a function of the dimensionless shear rate G = ,uka/Eh defined with 
respect to the equivalent capsule radius a = (3 V / ~ X ) ’ / ~  where V is the capsule volume, 
initial aspect ratio b / c  of the generating ellipse, and initial angle 8, between the major 
axis of the trace of the capsule in the (x,y)-plane and the x-axis. 

In figure 13 (a) we plot the evolution of the deformation parameter D,, for capsules 
with b/c = 2.0 and 8, = n/4, for a series of dimensionless shear rates; at the initial 
instant D,, = 1 /3. The general features of the deformation curves are similar to those 
for the spherical capsules discussed in the preceding section. The results suggest that, 
at long times, the capsules reach asymptotic shapes for all values of G, except for the 
highest shear rate G = 1, with higher values of G corresponding to higher asymptotic 
deformations. When G = 1 the deformation curve indicates continued elongation, 
possibly leading to membrane rupture. The critical value of G above which the capsules 
fail to assume stationary shapes is estimated to be close to but below the value of 0.20, 
which is comparable to the corresponding critical value for spherical capsules. 

The behaviour of the inclination angle is illustrated in figure 13 (b). We observe that 
all curves fall on top of each other, which is a significant departure from the behaviour 
of spherical capsules. The rate of rotation is significant even when the deformation D,, 
appears to have reached its asymptotic value. Unfortunately, the computations had to 
be terminated at the point where numerical instabilities placed a pragmatic limit on the 
size of the time step. Further computations discussed below for different inclinations 
0, will indicate that, at long times, 8 tends to an asymptotic value that is close to 0 .13~.  
The capsule rotates because, during the initial stages of the motion, the particle behaves 
like rigid body immersed in a simple shear flow, and the effect of deformation is masked 
by the global rotation. 

To illustrate the nature of the transient deformation, in figure 14(a, b) we present 
successive profiles of the contour of the capsule in the (x,y)-plane for G = 0.025 and 
0.10, indicating the position of the marker points. At the latest time depicted in figure 
14(a), the upper and lower main body of the capsule has reached a nearly steady state 
with the marker points tank-treading around the contour, but the tip of the capsule still 
undergoes substantial deformation. At the latest time depicted in figure 14(b) the entire 
body of the capsule appears to have reached a quasi-steady state, but figure 13(b) 
indicates that the capsule continues to rotate like a rigid body with small changes in 
shape. 

We turn next to illustrate the effect of initial inclination angle 8, by discussing 
differences in the behaviour of a capsule for G = 0.10. In figure 15(a, b) we plot the 
evolution of D,, and 8 for 8, = 0, 0 . 1 3 ~ ~  0.257~ 0 .35~,  and in figure 15(c) we present 
successive profiles of the contour of the capsule in the (x, y)-plane for 8, = 0 . 1 3 ~  and 
0. The value 0 . 1 3 ~  was selected because it is close to the asymptotic inclination angle 
of a deformed spherical capsule with D,, = 1/3 discussed in $3. Figure 15(a) shows 
that the time it takes for the capsule to deform and attain the asymptotic shape is a 
strong function of O,, with the fastest rate of deformation at the initial instant occurring 
for 8,, = 0.25~.  In this case, the major axis of the capsule is aligned with the first 
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FIGURE 13. Evolution of (a) the deformation parameter D,,, and (b) inclination angle 0 for an oblate 
spheroidal capsule resembling a disk, with aspect ratio blc = 2.0, initial orientation 0, = x/4, and 
several values of the dimensionless shear rate. 

principal direction of the incident flow and is therefore subjected to stronger deforming 
action. The computations with 8, = 0 and 0 . 1 3 ~  became unstable at a relatively early 
stage of the deformation; in the second case, the surface grid suffers severe distortions 
because the capsule must rotate in the counterclockwise direction towards the steady 
inclination angle. Figure 15 (b) suggests that the asymptotic inclination angle at long 
times is common in all three and close to 21". 

We examine next the kinematical behaviour of the membrane and development of 
tensions with an objective of identifying the effect of the aspect ratio of the unstressed 
shape. In figure 16(a, b) we plot the distributions of the tangential component of the 
velocity along the trace of the contour of the capsule in the (x,y)-plane, the 
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FIGURE 14. Trajectories of marker points in the (x,y)-plane for (a) G = 0.025, at kt = 0,0.10,0.20, 
0.30; (b)  G = 0.1, at kt = 0.195,0.395,0.595,0.795. 

instantaneous membrane thickness h’/h = 1 / A ,  A,, and the principal tensions and T,, 
against the meridional angle 8 around the contour of the capsule in the (x,y)-plane. 
The two-figures correspond to G = 0.10 and kt = 0.595 with initial orientations 8, = 
0.257~ and 0.137~, the corresponding contour shapes are depicted in figure 15(c). The 
qualitative features of corresponding distributions in figure 16(a, b) are similar, 
although significant quantitative differences are apparent. In both cases the 
instantaneous tank-treading velocity shows substantial variation along the capsule 
indicating that the membrane is subject to a significant rate of compression and 
stretching. Although spheroidal capsules with purely elastic interfaces are only 
approximate models of red blood cells, it is nevertheless interesting to compare the 
computed tank-treading frequency f of point particles in the (x, y)-plane with that 
measured in the laboratory for red blood cells, which is aroundf= 0.22k. The present 
results for a / b  = 2 show that f = 0.30k, which is in the same range with the 
experimentally measured values. 

The distributions of h’/h reveal that minimum membrane thickness occurs at a point 
over the main body of the cell located a significant distance away from the major axis 
of the capsule. This behaviour is different from that of the spherical capsules discussed 
in $3 where maximum thinning occurred near the tip. The distribution of the principal 
tensions are also different from those for the spherical capsules illustrated in figure 
9(c, d ) .  In the case of the ellipsoidal particle, the first principal tension is consistently 
higher than the second principal tension, and the point at which is maximum is near 
the middle of the main body of the cell and close to the point of maximum thinning. 
These results indicate that the location of maximum thinning and possible membrane 
rupture is sensitive to the unstressed particle shape. 

Zhou & Pozrikidis (1995) studied the deformation of capsules with oblate spheroidal 
unstressed shapes bounded by incompressible membranes and computed the 
developing membrane tensions. Their computations showed that the point of maximum 
tension is located over the upper body of the capsule close to the rear end. Comparing 
their results with the present observations indicates that the mechanical properties of 
the membrane play an important role in determining the location of rupture. 
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FIGURE IS(a,b). For caption see facing page. 

We performed a series of computations in which the incident shear flow was stopped 
and the deformed capsule was allowed to relax back to the initial shape. In figure 17 
we plot the excess deformation D,, - D!&, where D& = 1/3 corresponds to the 
unstressed shape, as a function of the dimensionless time tEh/pa on a linear-log scale 
during relaxation, and obtain a nearly straight line. The two curves shown with the 
solid and dashed line correspond to two different initial capsule shapes taken from the 
deformation of a capsule with G = 0.10; the origin of time was shifted to match 
corresponding values of Dz,. The negative of the inverse of the slope of the straight line 
defines the relaxation time 7 = 7.0,ua/Eh which is substantially smaller than the value 
12.7 obtained previously for the spherical capsules. Thus, the higher the aspect ratio of 
the undeformed shape, the faster the capsules relax back to the unstressed state. 
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FIGURE 15. Evolution of (a) the deformation parameter DIy, and (b) inclination angle 0 for an oblate 
spheroidal capsule with aspect ratio b/c  = 2.0 at G = 0.10, corresponding to different initial 
inclination angles 8,. (c) Trajectories of marker points in the (x,y)-plane for 8, = 0 . 1 3 ~  (top) and 
8, = 0 (bottom), at times kt = 0,O. 195,0.395,0.595,0.795. 

Schmid-Schonbein (1975) reported that the relaxation time of red blood cells in a 
dextran solution with ,u = 60 CP is 0.6 s. Taking a = 3 mm, Eh = 0.0025 dyn cm-' 
yields 7 = 0.5 s which is in the same range as the observed value. 

Computations with capsules of higher aspect ratio a / b  were hindered by high 
computational cost. A capsule with a / b  = 3 has Dozy = 0.5 in the unstressed state, 
which is close to the point where the 16 by 8 grid becomes unable to describe the shape 
of the membrane with sufficient resolution. Furthermore, computations using the 
strain-energy function for the red blood cell membrane given in (2.14) with the values 
of B and C proposed by Skalak et al. (1973) were hindered by numerical instabilities 
attributed to the fact that the elastic tensions are strong functions of the areal stretch. 

6. Summary and comments 
We have developed a boundary element method suitable for computing the finite 

deformation of capsules enclosed by elastic membranes whose mechanical behaviour 
is expressed by a general strain-energy function. In its present implementation, the 
method is capable of describing the deformation of spherical and spheroidal capsules 
with low and moderate aspect ratio whose interface exhibits a simple type of elastic 
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behaviour. For highly nonlinear elastic behaviour and capsules with highly eccentric 
shapes, the effectiveness of the method is limited by numerical instabilities due to the 
grid distortion. 

For small deformations, the numerical results for spherical capsules are in agreement 
with the predictions of the first-order small-deformation theory of Barthbs-Biesel and 
coworkers in all aspects of the motion. For moderate and large deformations there are 
significant differences in both the transient and asymptotic capsule shapes, and the 
distribution of the elastic tensions. Such differences, however, are familiar from the 
analogous case of liquid drops. The point of maximum membrane thinning is found to 
be close to the point where one of the principal tensions assumes its maximum value, 
and this indicates that the point where the membrane is likely to rupture is insensitive 
to the precise mechanism of rupture. The aspect ratio of capsules with non-spherical 
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FIGURE 17. Evolution of the deformation parameter D,, during relaxation to the spheroidal 
shape. The solid and dashed lines correspond to two different initial capsule shapes. 

unstressed shapes has a significant effect on the kinematical behaviour of the 
membrane and the development of tensions. Comparisons between the numerical 
results and the recent laboratory observations of Chang & Olbricht (1993) showed 
qualitative similarities but also quantitative discrepancies. The latter are attributed to 
a number of factors including the effect of surface viscosity. 

Capsules enclosed by purely elastic membranes are only approximate models of red 
blood cells, and this is evidenced by the fact that the purely elastic membranes undergo 
significant stretching and may not be considered to be incompressible. In the present 
computations, the area of small interfacial patches may increase by as much as 10% 
of the initial value. Nevertheless, the results for the tank-treading frequency of oblate 
spheroidal capsules with aspect ratio b /c  = 2, and for the relaxation time to the 
unstressed shape, are found to be in the same range as those measured in the laboratory 
for normal red blood cells. Incorporating an isotropic surface tension with an objective 
of satisfying the condition of membrane incompressibility, and accounting for the 
effect of surface viscosity, will improve the model, but is currently prohibited by 
increased computational cost. 
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